\qquad

Final Exam MTH 211 Fall 2010

Ayman Badawi

QUESTION 1. (Each is 4 points, Total = 64)

(i) The measurement of each interior angle of a regular 10-gon is
a) 36
(b) 144
c) 100
108
(ii) The measurement of each center angle of a regular 15-gon is
a) 156
b) 12
c) 24
d) 225
(iii) One of the following is constructible by unmarked ruler and a compass:
a) regular 21-gon
b) regular 22-gon
c) regular 34-gon
d) regular 50-gon
(iv) Given C is a circle centered at O and with radius 6 cm . Let A be a point such that $|O A|=3$. Let $\operatorname{Inv}(A)$ be the inversion of A with respect to C. Then $|\operatorname{OInv}(A)|=$
a) 2
b) 12
c) 9
d) 4.5
(v) If a regular n-gon is constructible, then the angle (180/n) is constructible.
a) True
b) False
(vi) If an angle α is constructible, then the angle $\alpha / 16$ is constructible.
a) True
b) False
(vii) Let C be a circle centered at O and with radius 3 . Given A is a point such that $|O A|=1$ and D is a circle orthogonal to C and passing through A. Then one of the following values is a possibility for the radius of D :
a)3
b) 5
c) 3.5
d) 2
(viii) Let H be the horizon circle (the model for non-Euclidean) with radius 4 and centered at O. Let A be a point in H such that $|O A|=3$. Then the non-Euclidean distance between O and A is :
a) $\ln (3)$
b) $\ln (7)$
c) $\ln (9)=2 \ln (3)$
d) $\ln (4)$
(ix) In non-Euclidean (hyperbolic) geometry, if a, b are two points, then
a) There are infinitely many lines pass through a and b
b) There is exactly one circle passes through a and b
c) There is exactly one line passes through a but not through $b l l$) There is exactly one line passes through a and b.
(x) In non-Euclidean Geometry, the sum of all interior angles of a regular 4-gon is
a) 180
b) less than or equal to 180
c) 360
d) less than 360
(xi) One of the below is a possibility for the inversion of the arc $a b$ with respect to the circle C (the arc ab is a part of a circle not passing through the center of C)
(xii) One of the below is a possibility for the inversion of the arc $a b$ with respect to the circle C (the arc ab is a part of a circle passing through the center of C)
(xiii) Let C be a circle with radius 4 and centered at O . Let Q be a point on C. Draw a circle call it D centered at Q with radius 4 again (note that D passes through O). The two circles intersect in two points, say A and B. Now choose a point say Z on D such that the line segment OZ is a diameter of D. Now the line segment $A B$ intersects the diameter $O Z$ in a point say M (note that $A B$ is perpendicular to OZ). The inversion of M with respect to the circle C is
a) the point Z
b) a point outside the circle D
c) a point outside C but inside D and not on D
d) is the mid point of the line segment $Q Z$.
(xiv) In the previous question, the length of $A Z$ is
a) 4
b) $4 \sqrt{3}$
c) 6
d) $2 \sqrt{3}$
(xv) The length of $A Q$ in question XIII is
a) $2 \quad$ b) $\sqrt{2}$
c) $2 \sqrt{3}$
d) $4 \sqrt{3}$
(xvi) Let K be the mid-point of the line segment $O M$ as in question XIII. The inversion of K with respect to C is
a) a point inside D but outside C
b) the mid-point meter $O Z$
c) the mid-point of $Q Z$
d) a point outside D but on the line extension of $O Z$

QUESTION 2. (12 points) Let H be a horizon circle (a model for non-Euclidean geometry) centered at O and with radius 4. Construct a non-Euclidean triangle inside H call it $O A B$ such that $|O A|=|O B|=2$ and $O A$ is perpendicular to $O B$. (Note that $|O A|$ indicates the Euclidean distance between A and O). OUTLINE THE STEPS BY STATING THE CRUCIAL STEPS IN THE CONSTRUCTION.

Use a marked ruler in order to find the NON-EUCLIDEAN DISTANCE between A and B (You may measure to the nearest decimal)

QUESTION 3. (12 points) Draw a horizontal line and call it L_{1}, draw another line and call it L_{2} such that L_{2} intersects L_{1} at an angle 90 degrees. Let C be a point that does not lie on either L_{1} nor L_{2}. Find two points say a on L_{2} and b on L_{1} such that C lies on the line segment $a b$ and $|a c|=1.5|c b|$. OUTLINE THE STEPS BY STATING THE CRUCIAL STEPS IN THE CONSTRUCTION.

QUESTION 4. (12 points) Let $a b$ be a diameter of a semicircle. Find two points say D, F lying on the arc of the semicircle and two points say X, Y lying on the diameter ab such that $D F X Y$ is a rectangle with $F X$ as the length, $X Y$ as the width, and $|F X|=2|X Y|$. OUTLINE THE STEPS BY STATING THE CRUCIAL STEPS IN THE CONSTRUCTION.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

